Copyright © 2000-2004 The Apache Software Foundation. All rights reserved. This software is published under the terms of the Apache Software License version 1.1, a copy of which has been included in the LICENSE.txt file shipped with the log4j distribution. The present short manual also borrows some text from "The complete log4j manual", which contains more detailed and up to date information, by the same author (yours truly).
This document describes the log4j API, its unique features and design rationale. Log4j is an open source project based on the work of many authors. It allows the developer to control which log statements are output with arbitrary granularity. It is fully configurable at runtime using external configuration files. Best of all, log4j has a gentle learning curve. Beware: judging from user feedback, it is also quite addictive.
Almost every large application includes its own logging or tracing API. In conformance with this rule, the E.U. SEMPER project decided to write its own tracing API. This was in early 1996. After countless enhancements, several incarnations and much work that API has evolved to become log4j, a popular logging package for Java. The package is distributed under the Apache Software License, a fully-fledged open source license certified by the open source initiative. The latest log4j version, including full-source code, class files and documentation can be found at http://logging.apache.org/log4j/. By the way, log4j has been ported to the C, C++, C#, Perl, Python, Ruby, and Eiffel languages.
Inserting log statements into code is a low-tech method for debugging it. It may also be the only way because debuggers are not always available or applicable. This is usually the case for multithreaded applications and distributed applications at large.
Experience indicates that logging was an important component of the development cycle. It offers several advantages. It provides precise context about a run of the application. Once inserted into the code, the generation of logging output requires no human intervention. Moreover, log output can be saved in a persistent medium to be studied at a later time. In addition to its use in the development cycle, a sufficiently-rich logging package can also be viewed as an auditing tool.
As Brian W. Kernighan and Rob Pike put it in their truly excellent book "The Practice of Programming"
As personal choice, we tend not to use debuggers beyond getting a stack trace or the value of a variable or two. One reason is that it is easy to get lost in details of complicated data structures and control flow; we find stepping through a program less productive than thinking harder and adding output statements and self-checking code at critical places. Clicking over statements takes longer than scanning the output of judiciously-placed displays. It takes less time to decide where to put print statements than to single-step to the critical section of code, even assuming we know where that is. More important, debugging statements stay with the program; debugging sessions are transient.
Logging does have its drawbacks. It can slow down an application. If too verbose, it can cause scrolling blindness. To alleviate these concerns, log4j is designed to be reliable, fast and extensible. Since logging is rarely the main focus of an application, the log4j API strives to be simple to understand and to use.
Log4j has three main components: loggers, appenders and layouts. These three types of components work together to enable developers to log messages according to message type and level, and to control at runtime how these messages are formatted and where they are reported.
The first and foremost advantage of any logging API over plain
System.out.println
resides in its ability to disable certain log
statements while allowing others to print unhindered. This capability assumes
that the logging space, that is, the space of all possible logging statements,
is categorized according to some developer-chosen criteria. This observation had
previously led us to choose category as the central concept of the
package. However, since log4j version 1.2, Logger
class has
replaced the Category
class. For those familiar with earlier
versions of log4j, the Logger
class can be considered as a mere
alias to the Category
class.
Loggers are named entities. Logger names are case-sensitive and they follow the hierarchical naming rule:
|
For example, the logger named "com.foo"
is a parent of the
logger named "com.foo.Bar"
. Similarly, "java"
is a
parent of "java.util"
and an ancestor of
"java.util.Vector"
. This naming scheme should be familiar to most
developers.
The root logger resides at the top of the logger hierarchy. It is exceptional in two ways:
Invoking the class static Logger.getRootLogger method retrieves it. All other loggers are instantiated and retrieved with the class static Logger.getLogger method. This method takes the name of the desired logger as a parameter. Some of the basic methods in the Logger class are listed below.
package org.apache.log4j; public class Logger { // Creation & retrieval methods: public static Logger getRootLogger(); public static Logger getLogger(String name); // printing methods: public void debug(Object message); public void info(Object message); public void warn(Object message); public void error(Object message); public void fatal(Object message); // generic printing method: public void log(Level l, Object message); } |
Loggers may be assigned levels. The set of possible levels, that is
DEBUG,
INFO,
WARN,
ERROR
and FATAL
are defined in the org.apache.log4j.Level
class. Although we do not encourage you to do so, you may define your own levels
by sub-classing the Level
class. A perhaps better approach will be
explained later on.
If a given logger is not assigned a level, then it inherits one from its closest ancestor with an assigned level. More formally:
|
To ensure that all loggers can eventually inherit a level, the root logger always has an assigned level.
Below are four tables with various assigned level values and the resulting inherited levels according to the above rule.
Logger name |
Assigned level |
Inherited level |
---|---|---|
root | Proot | Proot |
X | none | Proot |
X.Y | none | Proot |
X.Y.Z | none | Proot |
In example 1 above, only the root logger is assigned a level. This level
value, Proot
, is inherited by the other loggers X
,
X.Y
and X.Y.Z
.
Logger name |
Assigned level |
Inherited level |
---|---|---|
root | Proot | Proot |
X | Px | Px |
X.Y | Pxy | Pxy |
X.Y.Z | Pxyz | Pxyz |
In example 2, all loggers have an assigned level value. There is no need for level inheritence.
Logger name |
Assigned level |
Inherited level |
---|---|---|
root | Proot | Proot |
X | Px | Px |
X.Y | none | Px |
X.Y.Z | Pxyz | Pxyz |
In example 3, the loggers root
, X
and
X.Y.Z
are assigned the levels Proot
, Px
and Pxyz
respectively. The logger X.Y
inherits its
level value from its parent X
.
Logger name |
Assigned level |
Inherited level |
---|---|---|
root | Proot | Proot |
X | Px | Px |
X.Y | none | Px |
X.Y.Z | none | Px |
In example 4, the loggers root
and X
and are
assigned the levels Proot
and Px
respectively. The
loggers X.Y
and X.Y.Z
inherits their level value from
their nearest parent X
having an assigned level..
Logging requests are made by invoking one of the printing methods of a logger
instance. These printing methods are debug,
info,
warn,
error,
fatal
and log
.
By definition, the printing method determines the level of a logging request.
For example, if c
is a logger instance, then the statement
c.info("..")
is a logging request of level INFO.
A logging request is said to be enabled if its level is higher than or equal to the level of its logger. Otherwise, the request is said to be disabled. A logger without an assigned level will inherit one from the hierarchy. This rule is summarized below.
|
This rule is at the heart of log4j. It assumes that levels are ordered. For
the standard levels, we have DEBUG < INFO < WARN < ERROR <
FATAL
.
Here is an example of this rule.
// get a logger instance named "com.foo" Logger logger = Logger.getLogger("com.foo"); // Now set its level. Normally you do not need to set the // level of a logger programmatically. This is usually done // in configuration files. logger.setLevel(Level.INFO); Logger barlogger = Logger.getLogger("com.foo.Bar"); // This request is enabled, because WARN >= INFO. logger.warn("Low fuel level."); // This request is disabled, because DEBUG < INFO. logger.debug("Starting search for nearest gas station."); // The logger instance barlogger, named "com.foo.Bar", // will inherit its level from the logger named // "com.foo" Thus, the following request is enabled // because INFO >= INFO. barlogger.info("Located nearest gas station."); // This request is disabled, because DEBUG < INFO. barlogger.debug("Exiting gas station search"); |
Calling the getLogger
method with the same name will always
return a reference to the exact same logger object.
For example, in
Logger x = Logger.getLogger("wombat"); Logger y = Logger.getLogger("wombat"); |
x
and y
refer to exactly the same logger object.
Thus, it is possible to configure a logger and then to retrieve the same instance somewhere else in the code without passing around references. In fundamental contradiction to biological parenthood, where parents always preceed their children, log4j loggers can be created and configured in any order. In particular, a "parent" logger will find and link to its descendants even if it is instantiated after them.
Configuration of the log4j environment is typically done at application initialization. The preferred way is by reading a configuration file. This approach will be discussed shortly.
Log4j makes it easy to name loggers by software component. This can be accomplished by statically instantiating a logger in each class, with the logger name equal to the fully qualified name of the class. This is a useful and straightforward method of defining loggers. As the log output bears the name of the generating logger, this naming strategy makes it easy to identify the origin of a log message. However, this is only one possible, albeit common, strategy for naming loggers. Log4j does not restrict the possible set of loggers. The developer is free to name the loggers as desired.
Nevertheless, naming loggers after the class where they are located seems to be the best strategy known so far.
The ability to selectively enable or disable logging requests based on their logger is only part of the picture. Log4j allows logging requests to print to multiple destinations. In log4j speak, an output destination is called an appender. Currently, appenders exist for the console, files, GUI components, remote socket servers, JMS, NT Event Loggers, and remote UNIX Syslog daemons. It is also possible to log asynchronously.
More than one appender can be attached to a logger.
The addAppender
method adds an appender to a given logger. Each enabled logging request for a
given logger will be forwarded to all the appenders in that logger as well as
the appenders higher in the hierarchy. In other words, appenders are
inherited additively from the logger hierarchy. For example, if a console
appender is added to the root logger, then all enabled logging requests will at
least print on the console. If in addition a file appender is added to a logger,
say C, then enabled logging requests for C and C's
children will print on a file and on the console. It is possible to
override this default behavior so that appender accumulation is no longer
additive by setting
the additivity flag to false
.
The rules governing appender additivity are summarized below.
|
The table below shows an example:
Logger Name | Added Appenders | Additivity Flag | Output Targets | Comment |
---|---|---|---|---|
root | A1 | not applicable | A1 | The root logger is anonymous but can be accessed with the Logger.getRootLogger() method. There is no default appender attached to root. |
x | A-x1, A-x2 | true | A1, A-x1, A-x2 | Appenders of "x" and root. |
x.y | none | true | A1, A-x1, A-x2 | Appenders of "x" and root. |
x.y.z | A-xyz1 | true | A1, A-x1, A-x2, A-xyz1 | Appenders in "x.y.z", "x" and root. |
security | A-sec | false | A-sec | No appender accumulation since the additivity flag is set to
false .
|
security.access | none | true | A-sec | Only appenders of "security" because the additivity flag in "security"
is set to false . |
More often than not, users wish to customize not only the output destination
but also the output format. This is accomplished by associating a
layout with an appender. The layout is responsible for formatting the
logging request according to the user's wishes, whereas an appender takes care
of sending the formatted output to its destination. The PatternLayout,
part of the standard log4j distribution, lets the user specify the output format
according to conversion patterns similar to the C language printf
function.
For example, the PatternLayout with the conversion pattern "%r [%t] %-5p %c - %m%n" will output something akin to:
176 [main] INFO org.foo.Bar - Located nearest gas station.
The first field is the number of milliseconds elapsed since the start of the program. The second field is the thread making the log request. The third field is the level of the log statement. The fourth field is the name of the logger associated with the log request. The text after the '-' is the message of the statement.
Just as importantly, log4j will render the content of the log message
according to user specified criteria. For example, if you frequently need to log
Oranges
, an object type used in your current project, then you can
register an OrangeRenderer
that will be invoked whenever an orange
needs to be logged.
Object rendering follows the class hierarchy. For example, assuming oranges
are fruits, if you register an FruitRenderer
, all fruits including
oranges will be rendered by the FruitRenderer
, unless of course you
registered an orange specific OrangeRenderer
.
Object renderers have to implement the ObjectRenderer interface.
Inserting log requests into the application code requires a fair amount of planning and effort. Observation shows that approximately 4 percent of code is dedicated to logging. Consequently, even moderately sized applications will have thousands of logging statements embedded within their code. Given their number, it becomes imperative to manage these log statements without the need to modify them manually.
The log4j environment is fully configurable programmatically. However, it is far more flexible to configure log4j using configuration files. Currently, configuration files can be written in XML or in Java properties (key=value) format.
Let us give a taste of how this is done with the help of an imaginary
application MyApp
that uses log4j.
import com.foo.Bar; // Import log4j classes. import org.apache.log4j.Logger; import org.apache.log4j.BasicConfigurator; public class MyApp { // Define a static logger variable so that it references the // Logger instance named "MyApp". static Logger logger = Logger.getLogger(MyApp.class); public static void main(String[] args) { // Set up a simple configuration that logs on the console. BasicConfigurator.configure(); logger.info("Entering application."); Bar bar = new Bar(); bar.doIt(); logger.info("Exiting application."); } } |
MyApp
begins by importing log4j related classes. It then defines
a static logger variable with the name MyApp
which happens to be
the fully qualified name of the class.
MyApp
uses the Bar
class defined in the package
com.foo
.
package com.foo; import org.apache.log4j.Logger; public class Bar { static Logger logger = Logger.getLogger(Bar.class); public void doIt() { logger.debug("Did it again!"); } } |
The invocation of the BasicConfigurator.configure method creates a rather simple log4j setup. This method is hardwired to add to the root logger a ConsoleAppender. The output will be formatted using a PatternLayout set to the pattern "%-4r [%t] %-5p %c %x - %m%n".
Note that by default, the root logger is assigned to
Level.DEBUG
.
The output of MyApp is:
0 [main] INFO MyApp - Entering application. 36 [main] DEBUG com.foo.Bar - Did it again! 51 [main] INFO MyApp - Exiting application.
The figure below depicts the object diagram of MyApp
after just
having called the BasicConfigurator.configure
method.
As a side note, let me mention that in log4j child loggers link only to their
existing ancestors. In particular, the logger named com.foo.Bar
is
linked directly to the root
logger, thereby circumventing the
unused com
or com.foo
loggers. This significantly
increases performance and reduces log4j's memory footprint.
The MyApp
class configures log4j by invoking
BasicConfigurator.configure
method. Other classes only need to
import the org.apache.log4j.Logger
class, retrieve the loggers they
wish to use, and log away.
The previous example always outputs the same log information. Fortunately, it
is easy to modify MyApp
so that the log output can be controlled at
run-time. Here is a slightly modified version.
import com.foo.Bar; import org.apache.log4j.Logger; import org.apache.log4j.PropertyConfigurator; public class MyApp { static Logger logger = Logger.getLogger(MyApp.class.getName()); public static void main(String[] args) { // BasicConfigurator replaced with PropertyConfigurator. PropertyConfigurator.configure(args[0]); logger.info("Entering application."); Bar bar = new Bar(); bar.doIt(); logger.info("Exiting application."); } } |
This version of MyApp
instructs
PropertyConfigurator
to parse a configuration file and set up
logging accordingly.
Here is a sample configuration file that results in exactly same output as
the previous BasicConfigurator
based example.
# Set root logger level to DEBUG and its only appender to A1. log4j.rootLogger=DEBUG, A1 # A1 is set to be a ConsoleAppender. log4j.appender.A1=org.apache.log4j.ConsoleAppender # A1 uses PatternLayout. log4j.appender.A1.layout=org.apache.log4j.PatternLayout log4j.appender.A1.layout.ConversionPattern=%-4r [%t] %-5p %c %x - %m%n |
Suppose we are no longer interested in seeing the output of any component
belonging to the com.foo
package. The following configuration file
shows one possible way of achieving this.
log4j.rootLogger=DEBUG, A1 log4j.appender.A1=org.apache.log4j.ConsoleAppender log4j.appender.A1.layout=org.apache.log4j.PatternLayout # Print the date in ISO 8601 format log4j.appender.A1.layout.ConversionPattern=%d [%t] %-5p %c - %m%n # Print only messages of level WARN or above in the package com.foo. log4j.logger.com.foo=WARN |
The output of MyApp
configured with this file is shown below.
2000-09-07 14:07:41,508 [main] INFO MyApp - Entering application. 2000-09-07 14:07:41,529 [main] INFO MyApp - Exiting application.
As the logger com.foo.Bar
does not have an assigned level, it
inherits its level from com.foo
, which was set to WARN in the
configuration file. The log statement from the Bar.doIt
method has
the level DEBUG, lower than the logger level WARN. Consequently,
doIt()
method's log request is suppressed.
Here is another configuration file that uses multiple appenders.
log4j.rootLogger=debug, stdout, R log4j.appender.stdout=org.apache.log4j.ConsoleAppender log4j.appender.stdout.layout=org.apache.log4j.PatternLayout # Pattern to output the caller's file name and line number. log4j.appender.stdout.layout.ConversionPattern=%5p [%t] (%F:%L) - %m%n log4j.appender.R=org.apache.log4j.RollingFileAppender log4j.appender.R.File=example.log log4j.appender.R.MaxFileSize=100KB # Keep one backup file log4j.appender.R.MaxBackupIndex=1 log4j.appender.R.layout=org.apache.log4j.PatternLayout log4j.appender.R.layout.ConversionPattern=%p %t %c - %m%n |
Calling the enhanced MyApp with the this configuration file will output the following on the console.
INFO [main] (MyApp2.java:12) - Entering application. DEBUG [main] (Bar.java:8) - Doing it again! INFO [main] (MyApp2.java:15) - Exiting application.
In addition, as the root logger has been allocated a second appender, output
will also be directed to the example.log
file. This file will be
rolled over when it reaches 100KB. When roll-over occurs, the old version of
example.log
is automatically moved to example.log.1
.
Note that to obtain these different logging behaviors we did not need to
recompile code. We could just as easily have logged to a UNIX Syslog daemon,
redirected all The log4j library does not make any assumptions about its environment. In
particular, there are no default log4j appenders. Under certain well-defined
circumstances however, the static inializer of the The default initialization is very useful in environments where the exact
entry point to the application depends on the runtime environment. For example,
the same application can be used as a stand-alone application, as an applet, or
as a servlet under the control of a web-server.
The exact default initialization algorithm is defined as follows:
See Loader.getResource(java.lang.String)
for the list of searched locations.
The PropertyConfigurator
will be used to parse the URL to configure log4j unless the URL ends with the
".xml" extension, in which case the DOMConfigurator
will be used. You can optionaly specify a custom configurator. The value of
the log4j.configuratorClass system property is taken as the fully
qualified class name of your custom configurator. The custom configurator you
specify must implement the Configurator
interface. The default log4j initialization is particularly useful in web-server
environments. Under Tomcat 3.x and 4.x, you should place the
You can also choose to set the system property log4j.configuration
before starting Tomcat. For Tomcat 3.x The Example 1
The Unix shell command com.foo
output to an NT Event logger, or forwarded
logging events to a remote log4j server, which would log according to local
server policy, for example by forwarding the log event to a second log4j server.
Default Initialization Procedure
Logger
class
will attempt to automatically configure log4j. The Java language guarantees that
the static initializer of a class is called once and only once during the
loading of a class into memory. It is important to remember that different
classloaders may load distinct copies of the same class. These copies of the
same class are considered as totally unrelated by the JVM.
resource
string variable to the value of the
log4j.configuration system property. The preferred way to specify
the default initialization file is through the log4j.configuration
system property. In case the system property log4j.configuration
is not defined, then set the string variable resource
to its
default value "log4j.properties".
resource
variable to a URL.
MalformedURLException
, then search for the
resource
from the classpath by calling
org.apache.log4j.helpers.Loader.getResource(resource,
Logger.class)
which returns a URL. Note that the string
"log4j.properties" constitutes a malformed URL.
Example Configurations
Default Initialization under Tomcat
log4j.properties
under the WEB-INF/classes
directory
of your web-applications. Log4j will find the properties file and initialize
itself. This is easy to do and it works.
TOMCAT_OPTS
environment
variable is used to set command line options. For Tomcat 4.0, set the
CATALINA_OPTS
environment variable instead of
TOMCAT_OPTS
.
export TOMCAT_OPTS="-Dlog4j.configuration=foobar.txt"
tells log4j to use the file foobar.txt
as the default
configuration file. This file should be place under the
WEB-INF/classes
directory of your web-application. The file will be
read using the PropertyConfigurator.
Each web-application will use a different default configuration file because
each file is relative to a web-application.
Example 2
The Unix shell command
export TOMCAT_OPTS="-Dlog4j.debug -Dlog4j.configuration=foobar.xml"tells log4j to output log4j-internal debugging information and to use the file
foobar.xml
as the default configuration file. This file should
be place under the WEB-INF/classes
directory of your
web-application. Since the file ends with a .xml
extension, it will
read using the DOMConfigurator.
Each web-application will use a different default configuration file because
each file is relative to a web-application.
Example 3
The Windows shell command
set TOMCAT_OPTS=-Dlog4j.configuration=foobar.lcf -Dlog4j.configuratorClass=com.foo.BarConfiguratortells log4j to use the file
foobar.lcf
as the default
configuration file. This file should be place under the
WEB-INF/classes
directory of your web-application. Due to the
definition of the log4j.configuratorClass system property, the file will
be read using the com.foo.BarConfigurator
custom configurator. Each
web-application will use a different default configuration file because each
file is relative to a web-application.
Example 4
The Windows shell command
set TOMCAT_OPTS=-Dlog4j.configuration=file:/c:/foobar.lcftells log4j to use the file
c:\foobar.lcf
as the default configuration
file. The configuration file is fully specified by the URL
file:/c:/foobar.lcf
. Thus, the same configuration file will be used
for all web-applications.
Different web-applications will load the log4j classes through their
respective classloaderss. Thus, each image of the log4j environment will act
independetly and without any mutual synchronization. For example,
FileAppenders
defined exactly the same way in multiple
web-application configurations will all attempt to write the same file. The
results are likely to be less than satisfactory. You must make sure that log4j
configurations of different web-applications do not use the same underlying
system resource.
Initialization servlet
It is also possible to use a special servlet for log4j initialization. Here is an example,
package com.foo; import org.apache.log4j.PropertyConfigurator; import javax.servlet.http.HttpServlet; import javax.servlet.http.HttpServletRequest; import javax.servlet.http.HttpServletResponse; import java.io.PrintWriter; import java.io.IOException; public class Log4jInit extends HttpServlet { public void init() { String prefix = getServletContext().getRealPath("/"); String file = getInitParameter("log4j-init-file"); // if the log4j-init-file is not set, then no point in trying if(file != null) { PropertyConfigurator.configure(prefix+file); } } public void doGet(HttpServletRequest req, HttpServletResponse res) { } } |
Define the following servlet in the web.xml file for your web-application.
<servlet> <servlet-name>log4j-init</servlet-name> <servlet-class>com.foo.Log4jInit</servlet-class> <init-param> <param-name>log4j-init-file</param-name> <param-value>WEB-INF/classes/log4j.lcf</param-value> </init-param> <load-on-startup>1</load-on-startup> </servlet> |
Writing an initialization servlet is the most flexible way for initializing
log4j. There are no constraints on the code you can place in the
init()
method of the servlet.
Most real-world systems have to deal with multiple clients simultaneously. In a typical multithreaded implementation of such a system, different threads will handle different clients. Logging is especially well suited to trace and debug complex distributed applications. A common approach to differentiate the logging output of one client from another is to instantiate a new separate logger for each client. This promotes the proliferation of loggers and increases the management overhead of logging.
A lighter technique is to uniquely stamp each log request initiated from the same client interaction. Neil Harrison described this method in the book "Patterns for Logging Diagnostic Messages," in Pattern Languages of Program Design 3, edited by R. Martin, D. Riehle, and F. Buschmann (Addison-Wesley, 1997).
To uniquely stamp each request, the user pushes contextual information into the NDC, the abbreviation of Nested Diagnostic Context. The NDC class is shown below.
public class NDC { // Used when printing the diagnostic public static String get(); // Remove the top of the context from the NDC. public static String pop(); // Add diagnostic context for the current thread. public static void push(String message); // Remove the diagnostic context for this thread. public static void remove(); }
The NDC is managed per thread as a stack of contextual information.
Note that all methods of the org.apache.log4j.NDC
class are static.
Assuming that NDC printing is turned on, every time a log request is made, the
appropriate log4j component will include the entire NDC stack for the
current thread in the log output. This is done without the intervention of the
user, who is responsible only for placing the correct information in the NDC by
using the push
and pop
methods at a few well-defined
points in the code. In contrast, the per-client logger approach commands
extensive changes in the code.
To illustrate this point, let us take the example of a servlet delivering content to numerous clients. The servlet can build the NDC at the very beginning of the request before executing other code. The contextual information can be the client's host name and other information inherent to the request, typically information contained in cookies. Hence, even if the servlet is serving multiple clients simultaneously, the logs initiated by the same code, i.e. belonging to the same logger, can still be distinguished because each client request will have a different NDC stack. Contrast this with the complexity of passing a freshly instantiated logger to all code exercised during the client's request.
Nevertheless, some sophisticated applications, such as virtual hosting web
servers, must log differently depending on the virtual host context and also
depending on the software component issuing the request. Recent log4j releases
support multiple hierarchy trees. This enhancement allows each virtual host to
possess its own copy of the logger hierarchy.
One of the often-cited arguments against logging is its computational cost.
This is a legitimate concern as even moderately sized applications can generate
thousands of log requests. Much effort was spent measuring and tweaking logging
performance. Log4j claims to be fast and flexible: speed first, flexibility
second.
The user should be aware of the following performance issues.
When logging is turned off entirely or just for a set
of levels, the cost of a log request consists of a method invocation plus
an integer comparison. On a 233 MHz Pentium II machine this cost is typically
in the 5 to 50 nanosecond range.
However, The method invocation involves the "hidden" cost of parameter
construction.
For example, for some logger To avoid the parameter construction cost write: This will not incur the cost of parameter construction if debugging is
disabled. On the other hand, if the logger is debug-enabled, it will incur
twice the cost of evaluating whether the logger is enabled or not: once in
In log4j, logging requests are made to instances of the Logger class.
Logger is a class and not an interface. This measurably reduces the cost of
method invocation at the cost of some flexibility.
Certain users resort to preprocessing or compile-time techniques to compile
out all log statements. This leads to perfect performance efficiency with
respect to logging. However, since the resulting application binary does not
contain any log statements, logging cannot be turned on for that binary. In my
opinion this is a disproportionate price to pay in exchange for a small
performance gain.
This is essentially the performance of walking the logger hierarchy. When
logging is turned on, log4j still needs to compare the level of the log
request with the level of the request logger. However, loggers may not have an
assigned level; they can inherit them from the logger hierarchy. Thus, before
inheriting a level, the logger may need to search its ancestors.
There has been a serious effort to make this hierarchy walk to be as fast
as possible. For example, child loggers link only to their existing ancestors.
In the The typical cost of walking the hierarchy is typically 3 times slower than
when logging is turned off entirely.
This is the cost of formatting the log output and sending it to its target
destination. Here again, a serious effort was made to make layouts
(formatters) perform as quickly as possible. The same is true for appenders.
The typical cost of actually logging is about 100 to 300 microseconds. See org.apache.log4.performance.Logging
for actual figures. Although log4j has many features, its first design goal was speed. Some log4j
components have been rewritten many times to improve performance. Nevertheless,
contributors frequently come up with new optimizations. You should be pleased to
know that when configured with the SimpleLayout
performance tests have shown log4j to log as quickly as
Log4j is a popular logging package written in Java. One of its distinctive
features is the notion of inheritance in loggers. Using a logger hierarchy it is
possible to control which log statements are output at arbitrary granularity.
This helps reduce the volume of logged output and minimize the cost of logging.
One of the advantages of the log4j API is its manageability. Once the log
statements have been inserted into the code, they can be controlled with
configuration files. They can be selectively enabled or disabled, and sent to
different and multiple output targets in user-chosen formats. The log4j package
is designed so that log statements can remain in shipped code without incurring
a heavy performance cost.
Performance
cat
, writing, logger.debug("Entry number: " + i + " is " + String.valueOf(entry[i]));
incurs the cost of constructing the message parameter, i.e.
converting both integer i
and entry[i]
to a String,
and concatenating intermediate strings, regardless of whether the message will
be logged or not. This cost of parameter construction can be quite high and it
depends on the size of the parameters involved.
if(logger.isDebugEnabled() {
logger.debug("Entry number: " + i + " is " + String.valueOf(entry[i]));
}
debugEnabled
and once in debug
. This is an
insignificant overhead because evaluating a logger takes about 1% of the time
it takes to actually log.
BasicConfigurator
example shown earlier, the logger named
com.foo.Bar
is linked directly to the root logger, thereby
circumventing the nonexistent com
or com.foo
loggers. This significantly improves the speed of the walk, especially in
"sparse" hierarchies.
System.out.println
.
Conclusions
Acknowledgments
Many thanks to N. Asokan for reviewing the article. He
is also one of the originators of the logger concept. I am indebted to Nelson
Minar for encouraging me to write this article. He has also made many useful
suggestions and corrections to this article. Log4j is the result of a collective
effort. My special thanks go to all the authors who have contributed to the
project. Without exception, the best features in the package have all originated
in the user community.